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Abstract. In this paper, we prove that if the group of isometries on C0(Ω, X) is alge-

braically reflexive, then the set of isometries of order n on C0(Ω, X) is also algebraically

reflexive. Here, Ω is a first countable locally compact Hausdorff space, and X is a Banach

space having the strong Banach-Stone property. As a corollary to this, we establish the

algebraic reflexivity of the set of generalized bi-circular projections on C0(Ω, X).

1. Introduction

Reflexivity and hyperreflexivity explores the relation between sets of operators and their

common invariant subspaces. The notion of reflexivity was introduced by Halmos for

lattices of closed subspaces of a Hilbert space H, [10]. If A is a subset of B(H), then Lat A

denotes the set of all subspaces invariant under every operator in A. If L is a collection

of closed subspaces of H, then Alg L denotes the algebra of all operators which leave

every subspace in L invariant. A lattice L is reflexive if L = Lat Alg L. Reflexivity for

algebras was introduced by Radjavi and Rosenthal, [20]. An algebra A is called reflexive

if A = Alg Lat A.

Loginov and Šul′man, [17], extended this notion to linear subspaces of B(H). For any

subspace S of B(H), define

Ref S = {T ∈ B(H) : Th ∈ Sh, ∀ h ∈ H}. (1.1)

Ref S is called the attached space for S or the topological closure of S. The subspace S is

called reflexive (or topologically reflexive) if S = Ref S.
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Throughout this paper, let X be a Banach space and B(X) be the algebra of all bounded

linear operators on X. One can see that in definition (1.1), the assumptions that the

underlying space is a Hilbert space and S is a linear subspace are not essential. We can

define the topological closure for arbitrary subset S of B(X).

If A is an algebra that contains the identity, then Lat A is determined by the closed

cyclic subspaces of A, so Alg Lat A = Ref A. Thus, both definitions coincides for unital

algebras.

The notion of algebraic reflexivity has appeared in different contexts. The term was first

coined by Hadwin [7]. Let V be a vector space over a field F, and let L(V ) denotes the

algebra of all linear transformations on V . For a subspace S of L(V ) define

Sa = {T ∈ L(V ) : Tx ∈ Sx, ∀ x ∈ V }.

So, T ∈ Sa if and only if for each x ∈ V, ∃ S ∈ S, depending on x, such that Tx = Sx.

We say that T interpolates S or T is locally in S. Obviously, S ⊆ Sa. The subspace S is

called algebraically reflexive if S = Sa.

Obviously, any topologically reflexive subspace is algebraically reflexive.

Algebraic reflexivity in general and on certain classes of transformations were studied by

many authors, see for instance, [4, 5, 7, 14, 16, 19, 21] and [22]. Lecture Notes by Molnár

[18] gives a very comprehensive account of this theory.

An important class of transformations in B(X) is the group of surjective linear isome-

tries, denoted by G(X). We denote by Gn(X), all operators T in G(X) such that Tn = I.

Such operators are called isometries of order n. An operator T ∈ G(X)
a

is called a local

isometry.

The isometry group of any finite dimensional Banach space is algebraically reflexive.

Every Banach space admits a renorming whose isometry group is algebraically reflexive,

[13]. The isometry group of any infinite dimensional Hilbert space fails to be algebraically

reflexive. Indeed, given x, y ∈ H such that ||x|| = ||y||, there exists T ∈ G(H) such that

T (x) = y. So, G(H)
a

contains all into isometries.
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For a little nontrivial, but an easy, example one can look at `∞ in B(`2). We know that

B(`2) contains an isometric copy of `∞. We will see later that `∞ is algebraically reflexive.

In [5], Dutta and Rao proved that for a compact Hausdorff space Ω, if G(C(Ω)) is

algebraically reflexive, then G2(C(Ω)) is also algebraically reflexive. Motivated by this

result, in this paper we investigate the algebraic reflexivity of isometries of order n on

C0(Ω, X), the space of X-valued continuous functions on a first countable locally compact

Hausdorff space Ω vanishing at infinity.

A projection P ∈ B(X) is said to be a generalized bi-circular projection if P+λ(I−P ) ∈

G(X), where λ is a unit modulus complex number not equal to 1. This class was introduced

by Fošner, Ilǐsevic̀ and Li [6] in 2007. Description of generalized bi-circular projections for

different Banach spaces can be found in [1, 3, 12] and [15]. As a corollary to our result,

we establish the algebraic reflexivity of the set of generalized bi-circular projections on

C0(Ω, X), which answers a question raised in by Dutta and Rao in [5].

2. Preliminaries

The study of isometries between Banach spaces is one of the most important research

areas in functional analysis. One of the most classical results in this area is the Banach-

Stone theorem describing surjective linear isometries between Banach spaces of complex-

valued continuous functions on compact Hausdorff spaces.

While investigating reflexivity problems of the isometry group of a Banach space X,

firstly we observe that any local isometry on X is actually an isometry. In particular, if

T ∈ G(X)
a
, then for any x ∈ X, there exists Tx ∈ G(X) such that T (x) = Tx(x). Now,

taking norm on both sides we get ‖T (x)‖ = ‖Tx(x)‖ = ‖x‖. So, in order to show that

G(X) is algebraically reflexive, we need to prove that any local isometry is surjective. But

this problem is not as simple as it seems. Secondly, since we have a precise description of

surjective isometries for most of the classical Banach spaces, one has a good idea how any

local isometry looks like.

For the sake of completeness we recall the Banach-Stone theorem and some other defi-

nitions from [11, Chapter I] which are needed for the vector-valued version.
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Theorem 2.1. [2, Theorem 7.1] Let Ω be a locally compact Hausdorff space. If T :

C0(Ω) −→ C0(Ω) is a surjective isometry, then there exist a homeomorphism φ : Ω −→ Ω,

and a continuous map u : Ω −→ T such that

Tf(ω) = u(ω)f(φ(ω)), ∀ f ∈ C0(Ω), ω ∈ Ω.

Here, T denotes the unit circle in the complex plane.

Definition 2.2. Let T ∈ B(X).

(1) The operator T is called a multiplier of X if for every element p ∈ ext(BX∗),

there exists aT (p) ∈ C such that T ∗p = aT (p)p. The collection of all multipliers is

denoted by Mult(X). Here, ext(BX∗) denotes the set of extreme points of BX∗

(2) The centralizer of X is defined as

Z(X) = {T ∈ Mult(X) : ∃ T ∈ Mult(X) such that aT (p) = aT (p), ∀ p ∈

ext(BX∗)}.

Definition 2.3. A Banach space X is said to have trivial centralizer if the dimension of

Z(X) is equal to 1; that is, if the only elements in the centralizer are scalar multiples of

the identity operator I. Obviously, this is true if X is itself the scalar field.

Theorem 2.4. [2, Theorem 8.10] Let Ω be a locally compact Hausdorff space, and let X

be a Banach space with trivial centralizer. If T : C0(Ω, X) −→ C0(Ω, X) is a surjective

isometry, then there exist a homeomorphism φ : Ω −→ Ω and a map u : Ω −→ G(X),

continuous with respect to the strong operator topology of B(X), such that

Tf(ω) = uω(f(φ(ω))), ∀ f ∈ C0(Ω), ω ∈ Ω.

For simplicity, we denote u(ω) by uω.

Definition 2.5. [2, Definition 8.2] A Banach space X is said to have the strong Banach-

Stone property if it satisfies the condition in Theorem 2.4.

It is known that strictly convex spaces have trivial centralizer. In particular, they have

the strong Banach-Stone property.
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Before we proceed let us see how `∞ is algebraically reflexive in B(`2).

Let T ∈ `∞
a
. Then, for each f ∈ `2 we have Tf(j) = φf (j)f(j) for some φf ∈ `∞.

Hence, for the standard unit vectors ej in `2,

Tej(k) = φej (k)ej(k) =

φej (j), for j = k

0, for j 6= k.

This implies that Tej = φej (j)ej . Now, for f ∈ `2 we have

Tf = T

 ∞∑
j=1

f(j)ej

 =

∞∑
j=1

f(j)φej (j)ej = fφ,

where, φ = (φej (j)). As T is a bounded linear operator, φ ∈ `∞. Therefore, T ∈ `∞.

We can actually show that `∞ is topologically reflexive.

The following lemma will be useful later.

Lemma 2.6. Let T ∈ G(C0(Ω, X)). Then T is an isometry of order n if and only if there

exist a homeomorphism φ of Ω and a map u : Ω −→ G(X) satisfying

uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω) = I, φn(ω) = ω, ∀ ω ∈ Ω;

where I denotes the identity map on X and T is given by

Tf(ω) = uω(f(φ(ω))), ∀ f ∈ C0(Ω), ω ∈ Ω.

Proof. Since T ∈ G(C0(Ω, X)), ∃ a homeomorphism φ : Ω −→ Ω and a map u : Ω −→ G(X)

such that

Tf(ω) = uω(f(φ(ω))), ∀ f ∈ C0(Ω), ω ∈ Ω.

As T ∈ Gn(C0(Ω, X)) we have Tnf(ω) = f(ω). This show that

uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω)(f(φn(ω))) = f(ω). (2.1)

For a fixed x ∈ X and ω ∈ Ω consider the function fx ∈ C0(Ω, X) such that fx(ω) = x.

Applying Equation (2.1) to fx we get

uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω)(x) = x.
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Since this can be done for each x ∈ X and each ω ∈ Ω we conclude

uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω) = I.

This also implies that f(φn(ω)) = f(ω) for all f ∈ C0(Ω, X). Hence, φn(ω) = ω. �

3. Algebraic Reflexivity of Gn(C0(Ω, X))

Our main result is the following.

Theorem 3.1. Let Ω be a first countable locally compact Hausdorff space, and let X be a

Banach space which has the strong Banach-Stone property. If G(C0(Ω, X)) is algebraically

reflexive, then Gn(C0(Ω, X)) is algebraically reflexive.

Proof. Let T ∈ Gn(C0(Ω, X))
a
. Then for each f ∈ C0(Ω, X) we have Tf(ω) = ufω(f(φf (ω)))

where uf : Ω −→ G(X) is continuous in strong operator topology and satisfies

ufω ◦ u
f
φf (ω)

◦ · · · ◦ uf
φn−1
f (ω)

= I,

and φf is a homeomorphism of Ω such that φnf (ω) = ω for all ω ∈ Ω. In particular

T ∈ G(C0(Ω, X))
a
. Hence, there exist a homeomorphism φ : Ω −→ Ω, and a map u : Ω −→

G(X) such that

Tf(ω) = uω(f(φ(ω))), ∀ f ∈ C0(Ω), ω ∈ Ω.

To show that T ∈ Gn(C0(Ω, X)), we need to prove that Tn = I, that is, by Lemma 2.6

uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω) = I and φn(ω) = ω, ∀ ω ∈ Ω.

Suppose f = h⊗ x, where h is a strictly positive function in C0(Ω) and 0 6= x ∈ X. Then

we have Tf(ω) = ufω(f(φf (ω))) = uω(f(φ(ω))) or ufω(h(φf (ω))x) = uω(h(φ(ω))x). Taking

norm on both sides ans using the fact that ufω, uω are isometries, and h is strictly positive

we get ufω(x) = uω(x). Therefore, ufω = uω for all ω ∈ Ω.

Let ω be any point in Ω. We consider the following cases.

Case I. Assume that ω = φ(ω). Then

φn(ω) = φ(φ(· · · (φ(ω)) · · · )) (n times) = ω.
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We choose h ∈ C0(Ω) such that 0 < h(ω) ≤ 1 and h−1{1} = {ω}. For f = h⊗x, 0 6= x ∈ X,

evaluating Tf at ω we get

Tf(ω) = uω(f(φ(ω))) = ufω(f(φf (ω)))

=⇒ uω(h(φ(ω))x) = ufω(h(φf (ω))x)

=⇒ uω(x) = ufω(h(φf (ω))x) (∵ h(φ(ω)) = h(ω) = 1)

=⇒ ‖uω(x)‖ = ‖ufω(h(φf (ω))x)‖

=⇒ h(φf (ω)) = 1 (uω and ufω are isometries)

=⇒ φf (ω) = ω (by the choice of h)

=⇒ φ2f (ω) = · · · = φn−1f (ω) = ω.

So, we have

I = ufω ◦ u
f
φf (ω)

◦ · · · ◦ uf
φn−1
f (ω)

= ufω ◦ ufω ◦ · · · ◦ ufω

= uω ◦ uω ◦ · · · ◦ uω (as ufω = uω).

Case II. We assume that φ(ω) 6= ω, φm(ω) = ω such that m divides n and φs(ω) 6= ω

for all s < m.

As m divides n, there exist some positive integer q such that n = mq. Therefore, we

have

φn(ω) = φmq(ω) = φm(φm(· · · (φm(ω))) · · · ) (q times) = ω.

We now choose h ∈ C0(Ω) such that 1 ≤ h(ω) ≤ m and

h−1{1} = {ω}, h−1{2} = {φ(ω)}, . . . , h−1{m} = {φm−1(ω)}.

Let f = h⊗ x for 0 6= x ∈ X. Evaluating Tf at ω, φ(ω), . . . , φm−1(ω) and considering our

choice of the function h we get φpf (ω) = φp(ω) for 1 ≤ p ≤ m.

This implies that

φm+1
f (ω) = φf (φmf (ω)) = φf (ω) = φ(ω) = φ(φm(ω)) = φm+1(ω).
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Thus, φpf (ω) = φp(ω), for m+ 1 ≤ p ≤ n− 1. Since uω = ufω for all ω ∈ Ω, we have

uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω) = ufω ◦ u
f
φf (ω)

◦ · · · ◦ uf
φn−1
f (ω)

= I.

Case III. We assume that φ(ω) 6= ω, φm(ω) = ω such that m does not divides n and

φs(ω) 6= ω for all s < m.

There exist integers r and q such that n = mq + r, 0 < r < m. We choose h ∈ C0(Ω)

such that 1 ≤ h(ω) ≤ m and

h−1{1} = {ω}, h−1{2} = {φ(ω)}, . . . , h−1{m} = {φm−1(ω)}.

By applying Tf at ω, φ(ω), . . . , φm−1(ω) and proceeding in the same way as in Case II

we get φpf (ω) = φp(ω) for 1 ≤ p ≤ n− 1. We now see that

Tf(φn−1(ω)) = uφn−1(ω)(f(φn(ω))) = uf
φn−1(ω)

(f(φf (φn−1(ω))))

=⇒ uφn−1(ω)(h(φn(ω))x) = uf
φn−1(ω)

(h(φf (φn−1f (ω)))x)

=⇒ uφn−1(ω)(h(φn(ω))x) = uf
φn−1(ω)

(h(φnf (ω))x)

=⇒ uφn−1(ω)(h(φn(ω))x) = uf
φn−1(ω)

(h(ω)x) (∵ φnf (ω) = ω)

=⇒ uφn−1(ω)(h(φn(ω))x) = uf
φn−1(ω)

(x) (∵ h(ω) = 1)

=⇒ ‖uφn−1(ω)(h(φn(ω))x)‖ = ‖uf
φn−1(ω)

(x)‖

=⇒ h(φn(ω)) = 1 (uφn−1(ω) and uf
φn−1(ω)

are isometries)

=⇒ φn(ω) = ω (by the choice of h).

But, our assumption that φm(ω) = ω implies that φmq(ω) = ω. Hence, we have

ω = φn(ω) = φr+mq(ω) = φr(φmq(ω)) = φr(ω),

a contradiction because r < m.

Case IV. We assume that ω, φ(ω), . . . , φn−1(ω) are all distinct.

Choose h ∈ C0(Ω) such that 1 ≤ h(ω) ≤ n and

h−1{1} = {ω}, h−1{2} = {φ(ω)}, . . . , h−1{n} = {φn−1(ω)}.
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Proceeding the same way as in Case III we get

φn(ω) = ω and uω ◦ uφ(ω) ◦ · · · ◦ uφn−1(ω) = I.

This completes the proof. �

Corollary 3.2. Let Ω be a first countable locally compact Hausdorff space. Let X be a Ba-

nach space which has the strong Banach-Stone property, and does not have any generalized

bi-circular projections. If G(C0(Ω, X)) is algebraically reflexive, then the set of generalized

bi-circular projections on C0(Ω, X) is also algebraically reflexive.

Proof. We denote the set of all generalized bi-circular projections on C0(Ω, X) by P. Let

P ∈ Pa. Then for each f ∈ C0(Ω, X), there exist Pf ∈ P such that Pf = Pff . Therefore,

by [1, Theorem 4.2] and the assumption on X, for each f there exists a homeomorphism

φf of Ω, uf : Ω −→ G(X) satisfying

φ2f (ω) = ω and ufω ◦ u
f
φf (ω)

= I, ∀ ω ∈ Ω

such that

Pf(ω) =
1

2
[f(ω) + ufω(f(φf (ω)))].

Therefore, for each f ∈ C0(Ω, X), we get (2P − I)f(ω) = ufω(f(φf (ω))). This implies that

2P − I ∈ G2(C0(Ω, X))
a
. The conclusion follows from Theorem 3.1. �

Combining Theorem 3.1 with [14, Theorem 7] we have the following corollary.

Corollary 3.3. Let Ω be a first countable compact Hausdorff space, and let X be a uni-

formly convex Banach space such that G(X) is algebraically reflexive. Then Gn(C(Ω, X))

is algebraically reflexive.

4. Remarks

Until now we have not said anything about hyperreflexivity. The concept of hyperreflex-

ivity is stronger than reflexivity. For a subspace S of B(H), and T ∈ B(H) we define

α(T,S) = sup{||P⊥TQ|| : P,Q are projections and P⊥SQ = {0}}.
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It is clear that α(T,S) ≤ dist(T,S). The subspace S is said to be hyperreflexive if there

is a constant K such that for every T ∈ B(H) we have dist(T,S) ≤ Kα(T,S).

It is not very difficult to see that any hyperreflexive subspace is reflexive.

Hadwin, [8], introduced an asymptotic version of hyperreflexivity. Define the seminorm

da(·,S) on B(H) by

da(T,S) = sup{lim supλ ||PλTQλ|| : {Pλ}, {Qλ} are nets of projections such that ||PλSQλ|| −→

0 ∀ S ∈ S}.

The subspace S is said to be approximately hyperreflexive if there is a constant K such

that dist(T,S) ≤ Kda(T,S) for every T ∈ B(H).

Hadwin proved that every unital C∗-algebra of B(H) is approximately hyperreflexive,

see [8, Theorem 13].

In [9], Hadwin defined an ingenious view of reflexivity in which he unified most of the

versions of reflexivity as well as hyperreflexivity. He proved several results in this setting

and obtained many important ones as corollaries to his results.

Yousefi, [23], used Hadwin’s view of reflexivity to prove that every C∗-algebra A of B(H)

is approximately hyperreflexive, surprisingly, with an elementary method. We note that A

does not have to be unital.

We want to emphasize here that Yousefi’s approach to use Hadwin’s general version is

new and rather powerful and we think it could be explored further to study reflexivity and

hyperreflexivity problems.
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